Search Posts

Ældning – aging – litteratur efter 2000

Inflammaging: a new immune–metabolic viewpoint for age-related diseases

Nature Reviews Endocrinology volume 14, pages576–590(2018)

Ageing and age-related diseases share some basic mechanistic pillars that largely converge on inflammation. During ageing, chronic, sterile, low-grade inflammation — called inflammaging — develops, which contributes to the pathogenesis of age-related diseases. From an evolutionary perspective, a variety of stimuli sustain inflammaging, including pathogens (non-self), endogenous cell debris and misplaced molecules (self) and nutrients and gut microbiota (quasi-self). A limited number of receptors, whose degeneracy allows them to recognize many signals and to activate the innate immune responses, sense these stimuli. In this situation, metaflammation (the metabolic inflammation accompanying metabolic diseases) is thought to be the form of chronic inflammation that is driven by nutrient excess or overnutrition; metaflammation is characterized by the same mechanisms underpinning inflammaging. The gut microbiota has a central role in both metaflammation and inflammaging owing to its ability to release inflammatory products, contribute to circadian rhythms and crosstalk with other organs and systems. We argue that chronic diseases are not only the result of ageing and inflammaging; these diseases also accelerate the ageing process and can be considered a manifestation of accelerated ageing. Finally, we propose the use of new biomarkers (DNA methylation, glycomics, metabolomics and lipidomics) that are capable of assessing biological versus chronological age in metabolic diseases.

Key points

  • According to geroscience, inflammation is one of the seven evolutionarily conserved mechanistic pillars of ageing that are shared by age-related diseases, including metabolic diseases.
  • Inflammaging is the long-term result of the chronic physiological stimulation of the innate immune system, which can become damaging during ageing — a period of life largely unpredicted by evolution.
  • Inflammaging is the by-product of the degeneracy of a few receptors that can sense a variety of non-self, self and quasi-self damage signals (or 'garbage') and activate the innate immune system.
  • Inflammaging and metaflammation largely share the same molecular mechanisms, in which metaflammation can be conceptualized as a specific situation of chronic inflammation caused by nutrient excess.
  • The gut microbiota has a central role in metaflammation and inflammaging, as it can release inflammatory products and contribute to the circadian rhythms and crosstalk with other organs and systems.
  • Biomarkers of biological age, such as DNA methylation, glycomics, metabolomics and lipidomics, can be successfully applied to metabolic diseases.


  1. 1.Kennedy, B. K. et al. Geroscience: linking aging to chronic disease. Cell 159, 709–713 (2014). This paper identifies seven fields in ageing research to expand geroscience research and to extend healthspan; the link between ageing and chronic disease is the central point of this paper.CAS PubMed PubMed Central Google Scholar 
  2. 2.López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).PubMed PubMed Central Google Scholar 
  3. 3.Franceschi, C. et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. NY Acad. Sci. 908, 244–254 (2000). This paper conceptualizes the inflammaging theory, starting from an evolutionary insight; the term inflammaging is used here.CAS PubMed Google Scholar 
  4. 4.Tauber, A. I. Timeline: Metchnikoff and the phagocytosis theory. Nat. Rev. Mol. Cell Biol.4, 897–901 (2003).CAS PubMed Google Scholar 
  5. 5.Vitale, G., Salvioli, S. & Franceschi, C. Oxidative stress and the ageing endocrine system.Nat. Rev. Endocrinol. 9, 228–240 (2013).CAS PubMed Google Scholar 
  6. 6.Gregor, M. F. & Hotamisligil, G. S. Inflammatory mechanisms in obesity. Annu. Rev. Immunol. 29, 415–445 (2011).CAS PubMed Google Scholar 
  7. 7.Darwin, C. On the origin of species by means of natural selection, or, The preservation of favoured races in the struggle for life (John Murray, 1859).
  8. 8.Fumagalli, M. et al. Signatures of environmental genetic adaptation pinpoint pathogens as the main selective pressure through human evolution. PLoS Genet. 7, e1002355 (2011).CAS PubMed PubMed Central Google Scholar 
  9. 9.Vasseur, E. & Quintana-Murci, L. The impact of natural selection on health and disease: uses of the population genetics approach in humans. Evol. Appl. 6, 596–607 (2013).PubMed PubMed Central Google Scholar 
  10. 10.Ottaviani, E. & Franceschi, C. The invertebrate phagocytic immunocyte: clues to a common evolution of immune and neuroendocrine systems. Immunol. Today 18, 169–174 (1997).CAS Google Scholar 
  11. 11.Chung, S. et al. Preadipocytes mediate lipopolysaccharide-induced inflammation and insulin resistance in primary cultures of newly differentiated human adipocytes.Endocrinology 147, 5340–5351 (2006).CAS Google Scholar 
  12. 12.Charrière, G. et al. Preadipocyte conversion to macrophage: evidence of plasticity. J. Biol. Chem. 278, 9850–9855 (2003).Google Scholar 
  13. 13.Hotamisligil, G. S. & Erbay, E. Nutrient sensing and inflammation in metabolic diseases.Nat. Rev. Immunol. 8, 923–934 (2008). This paper describes metabolically triggered inflammation (termed metaflammation), starting from a detailed evolutionary description of the evolutionary history of metabolic and immune responses.CAS PubMed PubMed Central Google Scholar 
  14. 14.Hotamisligil, G. S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006).CAS PubMed PubMed Central Google Scholar 
  15. 15.Hotamisligil, G. S. Inflammation, metaflammation and immunometabolic disorders.Nature 542, 177–185 (2017).CAS Google Scholar 
  16. 16.Ye, J. & Keller, J. N. Regulation of energy metabolism by inflammation: a feedback response in obesity and calorie restriction. Aging 2, 361–368 (2010).CAS PubMed PubMed Central Google Scholar 
  17. 17.Lochmiller, R. L. & Deerenberg, C. Trade-offs in evolutionary immunology: just what is the cost of immunity? Oikos 88, 87–98 (2000).Google Scholar 
  18. 18.Navarrete, A., van Schaik, C. P. & Isler, K. Energetics and the evolution of human brain size. Nature 480, 91–93 (2011).CAS Google Scholar 
  19. 19.Potts, R. Evolution: big brains explained. Nature 480, 43–44 (2011).CAS Google Scholar 
  20. 20.Ottaviani, E., Malagoli, D., Capri, M. & Franceschi, C. Ecoimmunology: is there any room for the neuroendocrine system? Bioessays 30, 868–874 (2008). The evolutionary considerations of this paper introduce the importance of the common origin of the immune and neuroendocrine system for the study of stress response and human health.Google Scholar 
  21. 21.Michael Muehlenbein, P. Human Evolutionary Biology (Cambridge Univ. Press, 2010).
  22. 22.Sansoni, P. et al. The immune system in extreme longevity. Exp. Gerontol. 43, 61–65 (2008).CAS Google Scholar 
  23. 23.Vescovini, R. et al. Naïve and memory CD8 T cell pool homeostasis in advanced aging: impact of age and of antigen-specific responses to cytomegalovirus. Age (Dordr.) 36, 625–640 (2014).CAS Google Scholar 
  24. 24.Sansoni, P. et al. New advances in CMV and immunosenescence. Exp. Gerontol. 55, 54–62 (2014).Google Scholar 
  25. 25.Low, H. et al. Cytomegalovirus restructures lipid rafts via a US28/CDC42-mediated pathway, enhancing cholesterol efflux from host cells. Cell Rep. 16, 186–200 (2016).CAS PubMed PubMed Central Google Scholar 
  26. 26.Yu, Y., Clippinger, A. J. & Alwine, J. C. Viral effects on metabolism: changes in glucose and glutamine utilization during human cytomegalovirus infection. Trends Microbiol.19, 360–367 (2011).CAS PubMed PubMed Central Google Scholar 
  27. 27.Chen, S. et al. Cytomegalovirus seropositivity is associated with glucose regulation in the oldest old. Results from the Leiden 85-plus Study. Immun. Ageing 9, 18 (2012).PubMed PubMed Central Google Scholar 
  28. 28.Almanzar, G. et al. Long-term cytomegalovirus infection leads to significant changes in the composition of the CD8+ T-cell repertoire, which may be the basis for an imbalance in the cytokine production profile in elderly persons. J. Virol. 79, 3675–3683 (2005).CAS PubMed PubMed Central Google Scholar 
  29. 29.Yurochko, A. D. & Huang, E. S. Human cytomegalovirus binding to human monocytes induces immunoregulatory gene expression. J. Immunol. 162, 4806–4816 (1999).CAS Google Scholar 
  30. 30.Lohr, J. M. & Oldstone, M. B. A. Detection of cytomegalovirus nucleic acid sequences in pancreas in type 2 diabetes. Lancet 336, 644–648 (1990).CAS PubMed Google Scholar 
  31. 31.Donath, M. Y. & Shoelson, S. E. Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol. 11, 98–107 (2011).CAS PubMed Google Scholar 
  32. 32.Tieri, P. et al. Network, degeneracy and bow tie integrating paradigms and architectures to grasp the complexity of the immune system. Theor. Biol. Med. Model.7, 32 (2010).PubMed PubMed Central Google Scholar 
  33. 33.Edelman, G. M. & Gally, J. A. Degeneracy and complexity in biological systems. Proc. Natl Acad. Sci. USA 98, 13763–13768 (2001). In this paper, Gerald Edelman and Joseph Gally describe the concept of degeneracy; this paper discusses the degeneracy of many systems and the idea that degeneracy is also important for natural selection (Nobel Prize for Medicine in 1972).CAS PubMed Google Scholar 
  34. 34.Gay, N. J. & Gangloff, M. Structure and function of Toll receptors and their ligands.Annu. Rev. Biochem. 76, 141–165 (2007).CAS PubMed Google Scholar 
  35. 35.Ottaviani, E., Malagoli, D. & Franceschi, C. Common evolutionary origin of the immune and neuroendocrine systems: from morphological and functional evidence to in silico approaches. Trends Immunol. 28, 497–502 (2007).CAS PubMed Google Scholar 
  36. 36.Franceschi, C., Garagnani, P., Vitale, G., Capri, M. & Salvioli, S. Inflammaging and 'garb-aging'. Trends Endocrinol. Metab. 28, 199–212 (2017).CAS PubMed Google Scholar 
  37. 37.Mathur, V. et al. Activation of the STING-dependent type I interferon response reduces microglial reactivity and neuroinflammation. Neuron 96, 1290–1302.e6 (2017).CAS PubMed Google Scholar 
  38. 38.Csete, M. & Doyle, J. Bow ties, metabolism and disease. Trends Biotechnol. 22, 446–450 (2004).CAS PubMed Google Scholar 
  39. 39.Lee, J. Y. et al. Saturated fatty acid activates but polyunsaturated fatty acid inhibits Toll-like receptor 2 dimerized with Toll-like receptor 6 or 1. J. Biol. Chem. 279, 16971–16979 (2004).CAS PubMed Google Scholar 
  40. 40.Huang, S. et al. Saturated fatty acids activate TLR-mediated proinflammatory signaling pathways. J. Lipid Res. 53, 2002–2013 (2012).CAS PubMed PubMed Central Google Scholar 
  41. 41.Zhao, L., Lee, J. Y. & Hwang, D. H. Inhibition of pattern recognition receptor-mediated inflammation by bioactive phytochemicals: a review of recent research. Nutr. Rev. 69, 310–320 (2011).PubMed Google Scholar 
  42. 42.Moossavi, S. Gliadin is an uncatalogued Toll-like receptor ligand. J. Med. Hypotheses Ideas 8, 44–47 (2014).CAS Google Scholar 
  43. 43.Wang, X. et al. Morphine activates neuroinflammation in a manner parallel to endotoxin. Proc. Natl Acad. Sci. USA 109, 6325–6330 (2012).CAS PubMed Google Scholar 
  44. 44.Lewis, S. S. et al. Glucuronic acid and the ethanol metabolite ethyl-glucuronide cause toll-like receptor 4 activation and enhanced pain. Brain Behav. Immun. 30, 24–32 (2013).CAS PubMed PubMed Central Google Scholar 
  45. 45.Byun, E.-B., Choi, H.-G., Sung, N.-Y. & Byun, E.-H. Green tea polyphenol epigallocatechin-3-gallate inhibits TLR4 signaling through the 67-kDa laminin receptor on lipopolysaccharide-stimulated dendritic cells. Biochem. Biophys. Res. Commun. 426, 480–485 (2012).CAS PubMed Google Scholar 
  46. 46.Park, H.-J. et al. Phenethyl isothiocyanate regulates inflammation through suppression of the TRIF-dependent signaling pathway of Toll-like receptors. Life Sci.92, 793–798 (2013).CAS PubMed Google Scholar 
  47. 47.Pasparakis, M. & Vandenabeele, P. Necroptosis and its role in inflammation. Nature 517, 311–320 (2015).CAS Google Scholar 
  48. 48.Revelo, X. S. et al. Nucleic acid-targeting pathways promote inflammation in obesity-related insulin resistance. Cell Rep. 16, 717–730 (2016).CAS PubMed Google Scholar 
  49. 49.Nishimoto, S. et al. Obesity-induced DNA released from adipocytes stimulates chronic adipose tissue inflammation and insulin resistance. Sci. Adv. 2, e1501332 (2016).PubMed PubMed Central Google Scholar 
  50. 50.Ebersole, J. L. et al. Aging, inflammation, immunity and periodontal disease.Periodontol. 2000 72, 54–75 (2016).PubMed Google Scholar 
  51. 51.Franceschi, C. & Campisi, J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. A Biol. Sci. Med. Sci. 69, S4–S9 (2014).PubMed Google Scholar 
  52. 52.Collino, S. et al. Metabolic signatures of extreme longevity in northern Italian centenarians reveal a complex remodeling of lipids, amino acids, and gut microbiota metabolism. PLoS ONE 8, e56564 (2013).CAS PubMed PubMed Central Google Scholar 
  53. 53.Biagi, E. et al. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS ONE 5, e10667 (2010).PubMed PubMed Central Google Scholar 
  54. 54.Biagi, E., Candela, M., Franceschi, C. & Brigidi, P. The aging gut microbiota: new perspectives. Ageing Res. Rev. 10, 428–429 (2011).PubMed Google Scholar 
  55. 55.Cevenini, E., Monti, D. & Franceschi, C. Inflamm-ageing. Curr. Opin. Clin. Nutr. Metab. Care 16, 14–20 (2013).CAS PubMed Google Scholar 
  56. 56.Biagi, E. et al. Gut microbiota and extreme longevity. Curr. Biol. 26, 1480–1485 (2016).CAS PubMed Google Scholar 
  57. 57.Lee, Y. K. & Mazmanian, S. K. Has the microbiota played a critical role in the evolution of the adaptive immune system? Science 330, 1768–1773 (2010).CAS PubMed PubMed Central Google Scholar 
  58. 58.Groussin, M. et al. Unraveling the processes shaping mammalian gut microbiomes over evolutionary time. Nat. Commun. 8, 14319 (2017).CAS PubMed PubMed Central Google Scholar 
  59. 59.Moeller, A. H. et al. Cospeciation of gut microbiota with hominids. Science 353, 380–382 (2016).CAS PubMed PubMed Central Google Scholar 
  60. 60.Santoro, A. et al. Gut microbiota changes in the extreme decades of human life: a focus on centenarians. Cell. Mol. Life Sci. 75, 129–148 (2018).CAS PubMed Google Scholar 
  61. 61.Franceschi, C. et al. Immunobiography and the heterogeneity of immune responses in the elderly: a focus on inflammaging and trained immunity. Front. Immunol. 8, 982 (2017).PubMed PubMed Central Google Scholar 
  62. 62.Kundu, P., Blacher, E., Elinav, E. & Pettersson, S. Our gut microbiome: the evolving inner self. Cell 171, 1481–1493 (2017).CAS PubMed Google Scholar 
  63. 63.Fransen, F. et al. Aged gut microbiota contributes to systemical inflammaging after transfer to germ-free mice. Front. Immunol. 8, 1385 (2017).PubMed PubMed Central Google Scholar 
  64. 64.Thevaranjan, N. et al. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe21, 455–466.e4 (2017).CAS PubMed PubMed Central Google Scholar 
  65. 65.Everard, A. et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl Acad. Sci. USA 110, 9066–9071 (2013).CAS Google Scholar 
  66. 66.Kuehbacher, T. et al. Intestinal TM7 bacterial phylogenies in active inflammatory bowel disease. J. Med. Microbiol. 57, 1569–1576 (2008).CAS Google Scholar 
  67. 67.Mukhopadhya, I., Hansen, R., El-Omar, E. M. & Hold, G. L. IBD—what role do Proteobacteria play? Nat. Rev. Gastroenterol. Hepatol. 9, 219–230 (2012).CAS PubMed Google Scholar 
  68. 68.Rubio-Ruiz, M. E., Peredo-Escárcega, A. E., Cano-Martínez, A. & Guarner-Lans, V. An evolutionary perspective of nutrition and inflammation as mechanisms of cardiovascular disease. Int. J. Evol. Biol. 2015, 179791 (2015).PubMed PubMed Central Google Scholar 
  69. 69.Ingram, D. K. & de Cabo, R. Calorie restriction in rodents: caveats to consider. Ageing Res. Rev. 39, 15–28 (2017). This review describes many crucial points that still need to be addressed in calorie restriction (such as the relation between calorie restriction and cognitive decline, the negative effect of calorie restriction and the role of genetics and gender in calorie restriction response) in future studies.PubMed PubMed Central Google Scholar 
  70. 70.Mercken, E. M. et al. Conserved and species-specific molecular denominators in mammalian skeletal muscle aging. NPJ Aging Mech. Dis. 3, 8 (2017).PubMed PubMed Central Google Scholar 
  71. 71.Lee, C. & Longo, V. Dietary restriction with and without caloric restriction for healthy aging. F1000Res. 5, 117 (2016).Google Scholar 
  72. 72.Barzilai, N., Huffman, D. M., Muzumdar, R. H. & Bartke, A. The critical role of metabolic pathways in aging. Diabetes 61, 1315–1322 (2012).CAS PubMed PubMed Central Google Scholar 
  73. 73.Ristow, M. & Schmeisser, K. Mitohormesis: promoting health and lifespan by increased levels of reactive oxygen species (ROS). Dose Response 12, 288–341 (2014).CAS PubMed PubMed Central Google Scholar 
  74. 74.Rose, G., Santoro, A. & Salvioli, S. Mitochondria and mitochondria-induced signalling molecules as longevity determinants. Mech. Ageing Dev. 165, 115–128 (2017).CAS PubMed Google Scholar 
  75. 75.Mirzaei, H., Suarez, J. A. & Longo, V. D. Protein and amino acid restriction, aging and disease: from yeast to humans. Trends Endocrinol. Metab. 25, 558–566 (2014).CAS PubMed PubMed Central Google Scholar 
  76. 76.Das, S. K., Balasubramanian, P. & Weerasekara, Y. K. Nutrition modulation of human aging: the calorie restriction paradigm. Mol. Cell. Endocrinol. 455, 148–157 (2017).CAS PubMed Google Scholar 
  77. 77.Keil, G., Cummings, E. & de Magalhães, J. P. Being cool: how body temperature influences ageing and longevity. Biogerontology 16, 383–397 (2015).CAS PubMed PubMed Central Google Scholar 
  78. 78.Walford, R. L. & Spindler, S. R. The response to calorie restriction in mammals shows features also common to hibernation: a cross-adaptation hypothesis. J. Gerontol. A Biol. Sci. Med. Sci. 52, B179–B183 (1997). This paper investigates commonalities among physiological events that occur during hibernation and under calorie restriction.CAS PubMed Google Scholar 
  79. 79.Xu, R. et al. Hibernating squirrel muscle activates the endurance exercise pathway despite prolonged immobilization. Exp. Neurol. 247, 392–401 (2013).CAS PubMed PubMed Central Google Scholar 
  80. 80.Xu, Y. et al. Molecular signatures of mammalian hibernation: comparisons with alternative phenotypes. BMC Genomics 14, 567 (2013).PubMed PubMed Central Google Scholar 
  81. 81.Tognini, P., Murakami, M. & Sassone-Corsi, P. Interplay between microbes and the circadian clock. Cold Spring Harb. Perspect. Biol. (2017).Article Google Scholar 
  82. 82.Ross, R. Atherosclerosis — an inflammatory disease. N. Engl. J. Med. 340, 115–126 (1999).CAS PubMed Google Scholar 
  83. 83.Alipour, A. et al. Leukocyte activation by triglyceride-rich lipoproteins. Arterioscler. Thromb. Vasc. Biol. 28, 792–797 (2008).CAS PubMed Google Scholar 
  84. 84.Sampson, M. J., Davies, I. R., Brown, J. C., Ivory, K. & Hughes, D. A. Monocyte and neutrophil adhesion molecule expression during acute hyperglycemia and after antioxidant treatment in type 2 diabetes and control patients. Arterioscler. Thromb. Vasc. Biol. 22, 1187–1193 (2002).CAS PubMed Google Scholar 
  85. 85.Libby, P. Inflammation in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 32, 2045–2051 (2012).CAS PubMed PubMed Central Google Scholar 
  86. 86.van Oostrom, A. J. H. H. M. et al. Activation of leukocytes by postprandial lipemia in healthy volunteers. Atherosclerosis 177, 175–182 (2004).PubMed Google Scholar 
  87. 87.Wang, Y. I. et al. Triglyceride-rich lipoprotein modulates endothelial vascular cell adhesion molecule (VCAM)-1 expression via differential regulation of endoplasmic reticulum stress. PLoS ONE 8, e78322 (2013).CAS PubMed PubMed Central Google Scholar 
  88. 88.Gower, R. M. et al. CD11c/CD18 expression is upregulated on blood monocytes during hypertriglyceridemia and enhances adhesion to vascular cell adhesion molecule-1.Arterioscler. Thromb. Vasc. Biol. 31, 160–166 (2011).CAS PubMed Google Scholar 
  89. 89.Higgins, L. J. & Rutledge, J. C. Inflammation associated with the postprandial lipolysis of triglyceride-rich lipoproteins by lipoprotein lipase. Curr. Atheroscler. Rep. 11, 199–205 (2009).CAS PubMed Google Scholar 
  90. 90.van Oostrom, A. J. H. H. M. et al. Postprandial recruitment of neutrophils may contribute to endothelial dysfunction. J. Lipid Res. 44, 576–583 (2003).Google Scholar 
  91. 91.Erridge, C., Attina, T., Spickett, C. M. & Webb, D. J. A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am. J. Clin. Nutr. 86, 1286–1292 (2007).CAS Google Scholar 
  92. 92.Manco, M., Putignani, L. & Bottazzo, G. F. Gut microbiota, lipopolysaccharides, and innate immunity in the pathogenesis of obesity and cardiovascular risk. Endocr. Rev.31, 817–844 (2010).CAS Google Scholar 
  93. 93.Musso, G., Gambino, R. & Cassader, M. Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes. Annu. Rev. Med. 62, 361–380 (2011).CAS Google Scholar 
  94. 94.Grosicki, G. J., Fielding, R. A. & Lustgarten, M. S. Gut microbiota contribute to age-related changes in skeletal muscle size, composition, and function: biological basis for a gut-muscle axis. Calcif. Tissue Int. 102, 433–442 (2017).PubMed PubMed Central Google Scholar 
  95. 95.Giordano, A. et al. Obese adipocytes show ultrastructural features of stressed cells and die of pyroptosis. J. Lipid Res. 54, 2423–2436 (2013).CAS PubMed PubMed Central Google Scholar 
  96. 96.Li, H., Lee, J., He, C., Zou, M.-H. & Xie, Z. Suppression of the mTORC1/STAT3/Notch1 pathway by activated AMPK prevents hepatic insulin resistance induced by excess amino acids. Am. J. Physiol. Endocrinol. Metab. 306, E197–E209 (2014).CAS Google Scholar 
  97. 97.Lee, P. L., Jung, S. M. & Guertin, D. A. The complex roles of mechanistic target of rapamycin in adipocytes and beyond. Trends Endocrinol. Metab. 28, 319–339 (2017).CAS PubMed PubMed Central Google Scholar 
  98. 98.Ozcan, U. et al. Loss of the tuberous sclerosis complex tumor suppressors triggers the unfolded protein response to regulate insulin signaling and apoptosis. Mol. Cell 29, 541–551 (2008).CAS PubMed PubMed Central Google Scholar 
  99. 99.Prattichizzo, F. et al. Inflammageing and metaflammation: the yin and yang of type 2 diabetes. Ageing Res. Rev. 41, 1–17 (2017).Google Scholar 
  100. 100.Franceschi, C. et al. Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech. Ageing Dev. 128, 92–105 (2007). This review describes not only the role of pro-inflammatory mechanisms in ageing but also the importance of the balance with anti-inflammatory factors (called anti-inflammaging) in healthy ageing.CAS Google Scholar 
  101. 101.Franceschi, C. et al. The continuum of aging and age-related diseases: common mechanisms but different rates. Front. Med. 5, 61 (2018).Google Scholar 
  102. 102.Olivieri, F. et al. MicroRNAs linking inflamm-aging, cellular senescence and cancer.Ageing Res. Rev. 12, 1056–1068 (2013).CAS Google Scholar 
  103. 103.Al-Nedawi, K. et al. Gut commensal microvesicles reproduce parent bacterial signals to host immune and enteric nervous systems. FASEB J. 29, 684–695 (2015).CAS Google Scholar 
  104. 104.Garagnani, P. et al. Methylation of ELOVL2 gene as a new epigenetic marker of age.Aging Cell 11, 1132–1134 (2012).CAS Google Scholar 
  105. 105.Bocklandt, S. et al. Epigenetic predictor of age. PLoS ONE 6, e14821 (2011).CAS PubMed PubMed Central Google Scholar 
  106. 106.Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013). This is one of the first papers to introduce the field of biological age, which is measured through DNA methylation profile and is described as methylation age in many human tissues.PubMed PubMed Central Google Scholar 
  107. 107.Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 49, 359–367 (2013).CAS Google Scholar 
  108. 108.Weidner, C. et al. Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol. 15, R24 (2014).PubMed PubMed Central Google Scholar 
  109. 109.Bacalini, M. G. et al. Identification of a DNA methylation signature in blood cells from persons with Down Syndrome. Aging (Albany NY) 7, 82–96 (2015).CAS Google Scholar 
  110. 110.Guastafierro, T. et al. Genome-wide DNA methylation analysis in blood cells from patients with Werner syndrome. Clin. Epigenetics 9, 92 (2017).CAS PubMed PubMed Central Google Scholar 
  111. 111.Horvath, S. et al. Accelerated epigenetic aging in Down syndrome. Aging Cell 14, 491–495 (2015).CAS PubMed PubMed Central Google Scholar 
  112. 112.Horvath, S. et al. Decreased epigenetic age of PBMCs from Italian semi-supercentenarians and their offspring. Aging (Albany NY) 7, 1159–1170 (2015).CAS Google Scholar 
  113. 113.Horvath, S. & Ritz, B. R. Increased epigenetic age and granulocyte counts in the blood of Parkinson's disease patients. Aging (Albany NY) 7, 1130–1142 (2015).CAS Google Scholar 
  114. 114.Horvath, S. et al. An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease. Genome Biol. 17, 171 (2016).PubMed PubMed Central Google Scholar 
  115. 115.Petkovich, D. A. et al. Using DNA methylation profiling to evaluate biological age and longevity interventions. Cell Metab. 25, 954–960.e6 (2017).CAS PubMed PubMed Central Google Scholar 
  116. 116.Bacalini, M. G. et al. Systemic age-associated DNA hypermethylation of ELOVL2 gene: in vivo and in vitro evidences of a cell replication process. J. Gerontol. A Biol. Sci. Med. Sci. 72, 1015–1023 (2016).PubMed PubMed Central Google Scholar 
  117. 117.WHI-EMPC Investigators et al. DNA methylation signatures of chronic low-grade inflammation are associated with complex diseases. Genome Biol. 17, 255 (2016).PubMed PubMed Central Google Scholar 
  118. 118.Nevalainen, T. et al. Transcriptomic and epigenetic analyses reveal a gender difference in aging-associated inflammation: the Vitality 90+ study. Age (Dordr.) 37, 9814 (2015).CAS Google Scholar 
  119. 119.Xu, C.-J. et al. DNA methylation in childhood asthma: an epigenome-wide meta-analysis. Lancet Respir. Med. 6, 379–388 (2018).CAS PubMed Google Scholar 
  120. 120.Nojima, M. et al. Correlation between global methylation level of peripheral blood leukocytes and serum C reactive protein level modified by MTHFR polymorphism: a cross-sectional study. BMC Cancer 18, 184 (2018).PubMed PubMed Central Google Scholar 
  121. 121.Dall'Olio, F. et al. N-Glycomic biomarkers of biological aging and longevity: a link with inflammaging. Ageing Res. Rev. 12, 685–698 (2013).Google Scholar 
  122. 122.Vanhooren, V. et al. N-Glycomic changes in serum proteins during human aging.Rejuvenation Res. 10, 521–531a (2007). This paper introduces the use of N-glycan level changes as a measurement of general health or for age-related disease progression.PubMed Google Scholar 
  123. 123.Vanhooren, V. et al. Serum N-glycan profile shift during human ageing. Exp. Gerontol.45, 738–743 (2010).CAS PubMed Google Scholar 
  124. 124.Borelli, V. et al. Plasma N-glycome signature of Down Syndrome. J. Proteome Res. 14, 4232–4245 (2015).CAS PubMed Google Scholar 
  125. 125.Holst, S. et al. in High-Throughput Glycomics and Glycoproteomics (eds Lauc, G. & Wuhrer, M.) 185–196 (Springer New York, 2017).
  126. 126.Krištic´, J. et al. Glycans are a novel biomarker of chronological and biological ages. J. Gerontol. A Biol. Sci. Med. Sci. 69, 779–789 (2014).PubMed Google Scholar 
  127. 127.Menni, C. et al. Glycosylation profile of immunoglobulin G is cross-sectionally associated with cardiovascular disease risk score and subclinical atherosclerosis in two independent cohorts. Circ. Res. 122, 1555–1564 (2018).CAS PubMed PubMed Central Google Scholar 
  128. 128.Testa, R. et al. N-glycomic changes in serum proteins in Type 2 diabetes mellitus correlate with complications and with metabolic syndrome parameters. PLoS ONE 10, e0119983 (2015).PubMed PubMed Central Google Scholar 
  129. Kreutzenberg, S. V. et al. Metformin improves putative longevity effectors in peripheral mononuclear cells from subjects with prediabetes. A randomized controlled trial. Nutr. Metab. Cardiovasc. Dis. 25, 686–693 (2015).Google Scholar 
  130. 130.Keser, T. et al. Increased plasma N-glycome complexity is associated with higher risk of type 2 diabetes. Diabetologia 60, 2352–2360 (2017).CAS PubMed Google Scholar 
  131. 131.Plomp, R. et al. Subclass-specific IgG glycosylation is associated with markers of inflammation and metabolic health. Sci. Rep. 7, 12325 (2017).PubMed PubMed Central Google Scholar 
  132. 132.Wahl, A. et al. Genome-wide association study on immunoglobulin G glycosylation patterns. Front. Immunol. 9, 277 (2018).PubMed PubMed Central Google Scholar 
  133. 133.Montoliu, I. et al. Serum profiling of healthy aging identifies phospho- and sphingolipid species as markers of human longevity. Aging (Albany NY) 6, 9–25 (2014).CAS Google Scholar 
  134. 134.Gonzalez-Covarrubias, V. et al. Lipidomics of familial longevity. Aging Cell 12, 426–434 (2013).CAS PubMed PubMed Central Google Scholar 
  135. 135.Li-Gao, R. et al. Postprandial metabolite profiles associated with type 2 diabetes clearly stratify individuals with impaired fasting glucose. Metabolomics 14, 13 (2018).PubMed Google Scholar 
  136. 136.Liu, J. et al. Metabolomics based markers predict type 2 diabetes in a 14-year follow-up study. Metabolomics 13, 104 (2017).PubMed PubMed Central Google Scholar 
  137. 137.Okekunle, A. P. et al. Abnormal circulating amino acid profiles in multiple metabolic disorders. Diabetes Res. Clin. Pract. 132, 45–58 (2017).CAS PubMed Google Scholar 
  138. 138.Wang, S. M. et al. Identification of serum metabolites associated with obesity and traditional risk factors for metabolic disease in Chinese adults. Nutr. Metab. Cardiovasc. Dis. 28, 112–118 (2017).PubMed Google Scholar 
  139. 139.Leal-Witt, M. J. et al. Untargeted metabolomics identifies a plasma sphingolipid-related signature associated with lifestyle intervention in prepubertal children with obesity. Int. J. Obes. 42, 72–78 (2017).Google Scholar 
  140. 140.BIOS Consortium et al. Blood lipids influence DNA methylation in circulating cells.Genome Biol. 17, 138 (2016).PubMed PubMed Central Google Scholar 
  141. 141.Martucci, M. et al. Mediterranean diet and inflammaging within the hormesis paradigm. Nutr. Rev. 75, 442–455 (2017).PubMed PubMed Central Google Scholar 
  142. 142.Lee, R. J. et al. Bacterial d-amino acids suppress sinonasal innate immunity through sweet taste receptors in solitary chemosensory cells. Sci. Signal. 10, eaam7703 (2017).PubMed PubMed Central Google Scholar 
  143. 143.Lee, R. J. et al. T2R38 taste receptor polymorphisms underlie susceptibility to upper respiratory infection. J. Clin. Invest. 122, 4145–4159 (2012).CAS PubMed PubMed Central Google Scholar 
  144. 144.Prince, A. The bitter taste of infection. J. Clin. Invest. 122, 3847–3849 (2012).CAS PubMed PubMed Central Google Scholar 
  145. 145.Harris, N. The enigmatic tuft cell in immunity. Science 351, 1264–1265 (2016).CAS PubMed Google Scholar 
  146. 146.Howitt, M. R. et al. Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science 351, 1329–1333 (2016).CAS PubMed PubMed Central Google Scholar 
  147. 147.Libert, S. & Pletcher, S. D. Modulation of longevity by environmental sensing. Cell 131, 1231–1234 (2007).CAS PubMed Google Scholar 
  148. 148.Waterson, M. J. et al. Water sensor ppk28 modulates Drosophila lifespan and physiology through AKH signaling. Proc. Natl Acad. Sci. USA 111, 8137–8142 (2014).CAS PubMed Google Scholar 
  149. 149.Zhang, Q. et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464, 104–107 (2010). This paper describes in detail the consequences of the evolutionarily conserved similarities among DAMPs and bacterial PAMPs and their role in inflammation.CAS PubMed PubMed Central Google Scholar 
  150. 150.Pinti, M. et al. Circulating mitochondrial DNA increases with age and is a familiar trait: implications for 'inflamm-aging'. Eur. J. Immunol. 44, 1552–1562 (2014).CAS PubMed Google Scholar 
  151. 151.Weinberg, S. E., Sena, L. A. & Chandel, N. S. Mitochondria in the regulation of innate and adaptive immunity. Immunity 42, 406–417 (2015).CAS PubMed PubMed Central Google Scholar 
  152. 152.Lund, J., Sato, A., Akira, S., Medzhitov, R. & Iwasaki, A. Toll-like receptor 9–mediated recognition of herpes simplex virus-2 by plasmacytoid dendritic cells. J. Exp. Med.198, 513–520 (2003).CAS PubMed PubMed Central Google Scholar 
  153. 153.Silver, A. C., Arjona, A., Walker, W. E. & Fikrig, E. The circadian clock controls toll-like receptor 9-mediated innate and adaptive immunity. Immunity 36, 251–261 (2012).CAS PubMed PubMed Central Google Scholar 
  154. 154.Fetissov, S. O. Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behaviour. Nat. Rev. Endocrinol. 13, 11–25 (2016). This Review describes the data relevant to the possible involvement of gut bacteria in the regulation of host appetite, integrating of the energy status of both the host and its gut microbiota.Google Scholar 
  155. 155.Liang, X. & FitzGerald, G. A. Timing the microbes: the circadian rhythm of the gut microbiome. J. Biol. Rhythms 32, 505–515 (2017).PubMed Google Scholar 
  156. 156.Thaiss, C. A. et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159, 514–529 (2014). This paper presents an example of how a symbiotic community may synchronize its interdependent physiological activities to the geophysical clock to promote homeostasis; moreover, it reveals that feeding rhythms direct microbiota diurnal oscillations and how external intervention (such as chronic jet lag) may lead to dysbiosis.CAS PubMed Google Scholar 
  157. 157.Leone, V. et al. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe 17, 681–689 (2015).CAS PubMed PubMed Central Google Scholar 
  158. 158.Thaiss, C. A. et al. Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell 167, 1495–1510.e12 (2016).CAS PubMed Google Scholar 
  159. 159.Froy, O. Circadian rhythms, nutrition and implications for longevity in urban environments. Proc. Nutr. Soc. (2017).Article PubMed Google Scholar 
  160. 160.Thaiss, C. A., Levy, M. & Elinav, E. Chronobiomics: the biological clock as a new principle in host–microbial interactions. PLOS Pathog. 11, e1005113 (2015).PubMed PubMed Central Google Scholar 
  161. 161.Patterson, R. E. & Sears, D. D. Metabolic effects of intermittent fasting. Annu. Rev. Nutr. 37, 371–393 (2017).CAS PubMed Google Scholar 
  162. 162.Baker, P. W., Rye, K. A., Gamble, J. R., Vadas, M. A. & Barter, P. J. Ability of reconstituted high density lipoproteins to inhibit cytokine-induced expression of vascular cell adhesion molecule-1 in human umbilical vein endothelial cells. J. Lipid Res. 40, 345–353 (1999).CAS Google Scholar 
  163. 163.Xia, P., Vadas, M. A., Rye, K. A., Barter, P. J. & Gamble, J. R. High density lipoproteins (HDL) interrupt the sphingosine kinase signaling pathway. A possible mechanism protection against atherosclerosis HDL. J. Biol. Chem. 274, 33143–33147 (1999).CAS Google Scholar 
  164. 164.Perrin-Cocon, L. et al. High-density lipoprotein phospholipids interfere with dendritic cell Th1 functional maturation. Immunobiology 217, 91–99 (2012).CAS PubMed Google Scholar 
  165. 165.Baker, P. W., Rye, K. A., Gamble, J. R., Vadas, M. A. & Barter, P. J. Phospholipid composition of reconstituted high density lipoproteins influences their ability to inhibit endothelial cell adhesion molecule expression. J. Lipid Res. 41, 1261–1267 (2000).CAS PubMed Google Scholar 
  166. 166.Litman, B. J., Lewis, E. N. & Levin, I. W. Packing characteristics of highly unsaturated bilayer lipids: Raman spectroscopic studies of multilamellar phosphatidylcholine dispersions. Biochemistry 30, 313–319 (1991).CAS Google Scholar 
  167. 167.Ulevitch, R. J., Johnston, A. R. & Weinstein, D. B. New function for high density lipoproteins. Their participation in intravascular reactions of bacterial lipopolysaccharides. J. Clin. Invest. 64, 1516–1524 (1979).CAS PubMed PubMed Central Google Scholar 
  168. 168.Vishnyakova, T. G. et al. Binding and internalization of lipopolysaccharide by Cla-1, a human orthologue of rodent scavenger receptor B1. J. Biol. Chem. 278, 22771–22780 (2003).CAS PubMed Google Scholar 
  169. 169.Murphy, A. J. et al. High-density lipoprotein reduces the human monocyte inflammatory response. Arterioscler. Thromb. Vasc. Biol. 28, 2071–2077 (2008).CAS PubMed Google Scholar 
  170. 170.Peshavariya, H. et al. Reconstituted high-density lipoprotein suppresses leukocyte NADPH oxidase activation by disrupting lipid rafts. Free Radic. Res. 43, 772–782 (2009).CAS PubMed Google Scholar 
  171. 171.Kabouridis, P. S. & Jury, E. C. Lipid rafts and T-lymphocyte function: Implications for autoimmunity. FEBS Lett. 582, 3711–3718 (2008).CAS PubMed PubMed Central Google Scholar 
  172. 172.Gupta, N. & DeFranco, A. L. Lipid rafts and B cell signaling. Semin. Cell Dev. Biol. 18, 616–626 (2007).CAS PubMed PubMed Central Google Scholar 
  173. 173.Fulop, T. et al. Immunosenescence and inflamm-aging as two sides of the same coin: friends or foes? Front. Immunol. 8, 1960 (2017).PubMed Google Scholar 
  174. 174.Doyle, S. & Menaker, M. Circadian photoreception in vertebrates. Cold Spring Harb. Symp. Quant. Biol. 72, 499–508 (2007).CAS PubMed Google Scholar 
  175. 175.Schibler, U. et al. Clock-talk: interactions between central and peripheral circadian oscillators in mammals. Cold Spring Harb. Symp. Quant. Biol. 80, 223–232 (2015).Google Scholar 
  176. 176.Olivieri, F., Rippo, M. R., Procopio, A. D. & Fazioli, F. Circulating inflamma-miRs in aging and age-related diseases. Front. Genet. 4, 121 (2013).CAS PubMed PubMed Central Google Scholar 
  177. 177.Zhao, J. et al. Metabolic profiles of biological aging in American Indians: the strong heart family study. Aging 6, 176–186 (2014).CAS PubMed PubMed Central Google Scholar 
  178. 178.Takiyama, N. & Matsumoto, K. Age-and sex-related differences of serum carnitine in a Japanese population. J. Am. Coll. Nutr. 17, 71–74 (1998).CAS Google Scholar 
  179. 179.Yu, Z. et al. Human serum metabolic profiles are age dependent: metabolic profiles associated with age. Aging Cell 11, 960–967 (2012).

Leave a Reply

Your email address will not be published. Required fields are marked *